If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2k^2+13k=0
a = 2; b = 13; c = 0;
Δ = b2-4ac
Δ = 132-4·2·0
Δ = 169
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{169}=13$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(13)-13}{2*2}=\frac{-26}{4} =-6+1/2 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(13)+13}{2*2}=\frac{0}{4} =0 $
| 4x-1+3x=76 | | 5/7=k-7/2 | | 6y-8=3y-14 | | 5c+4=2c+8 | | 11.7=0.9a | | 4-5x=x/4 | | x×5=125 | | 7x+5x-4x-5=27 | | 123-12x=15 | | 1/2x=3x+7 | | 6(3x=11)=30 | | X+7/6=2x7/6 | | 6y+y²=89991 | | G(n)=-n-3 | | 8x+3x+5=30 | | 162=2400+.015+x | | X/(0.3-x)(0.4-x)=8.67 | | -7x-54=-4x=33 | | 6x×7=3x+64 | | 9+2x+10-4=-x+12-2x | | 18x=-24 | | -28=(-21x+28)+21x | | 6x+7=3×+64 | | 3z−(−18)=42 | | -2x-26=-5x+34 | | j-3.7=20.7 | | x+8+62=90 | | 2(x-3)=10x-8x-3/4 | | -5x-105=77-12x | | -9x-219=80+4x | | -182=-x+6(6x-7) | | (1-2x)/(3x+4)=-3 |